New! Hire Essay Assignment Writer Online and Get Flat 20% Discount!!Order Now
ISIT208
Australia
University of Wollongong
Early in the development of the 737 MAX, engineers gathered at Boeing’s transonic wind tunnel in Seattle to test the jet’s aerodynamics using a scale model with a wingspan comparable to that of an eagle. The testing in 2012, with air flow approaching the speed of sound, allowed engineers to analyze how the airplane’s aerodynamics would handle a range of extreme maneuvers. When the data came back, according to an engineer involved in the testing, it was clear there was an issue to address.
Engineers observed a tendency for the plane’s nose to pitch upward during a specific extreme maneuver. After other efforts to fix the problem failed, the solution they arrived at was a piece of software — the Maneuvering Characteristics Augmentation System (MCAS) — that would move a powerful control surface at the tail to push the airplane’s nose down.
This is the story, including previously unreported details, of how Boeing developed MCAS, which played a critical role in two airliners nose-diving out of the sky, killing 346 people in Ethiopia and off the coast of Indonesia. Extensive interviews with people involved with the program, and a review of proprietary documents, show how Boeing originally designed MCAS as a simple solution with a narrow scope, then altered it late in the plane’s development to expand its power and purpose. Still, a safety-analysis led by Boeing concluded there would be little risk in the event of an MCAS failure — in part because of an FAA-approved assumption that pilots would respond to an unexpected activation in a mere three seconds.
The revised design allowed MCAS to trigger on the inputs of a single sensor, instead of two factors considered in the original plan. Boeing engineers considered that lack of redundancy acceptable, according to proprietary information reviewed by The Seattle Times, because they calculated the probability of a “hazardous” MCAS malfunction to be virtually inconceivable. As Boeing and the FAA advanced the 737 MAX toward production, they limited the scrutiny and testing of the MCAS design. Then they agreed not to inform pilots about MCAS in manuals, even though Boeing’s safety analysis expected pilots to be the primary backstop in the event the system went haywire.
In the wake of the two crashes, despite an outcry from the public and from some pilot and airline industry officials, Boeing has defended the processes behind its MCAS design decisions and refused to accept blame. The grounding of the MAX has entered its 15th week. Safety officials around the world are scrutinizing the changes to MCAS that Boeing has proposed to ensure such accidents won’t happen again. And they are assessing what training pilots may need on the new system.
“Safety is our top priority,” Boeing said in a statement. “Through the work we are doing now in partnership with our customers and regulators to certify and implement the software update, the 737 MAX will be one of the safest airplanes ever to fly.”
This investigation examines what’s known about the origins and operation of MCAS ahead of the final official accident-investigation reports, expected late this year for Lion Air Flight 610 and next year for Ethiopian Airlines Flight 302.
Was the design of the Boeing 737 Max an incremental or radical change? Why?
“Boeing has defended the processes behind its MCAS design decisions …”. Do you agree with Boeing’s position? Why or Why not?
Discuss the factors that contributed to the disaster
15,000+ happy customers and counting!